Public Health Reports

 Vol. 62 - JUNE 13, 1947 • No. 24Printed With the Approval of the Bureau of the Budget as Required by Rule 42 of the Joint Committee on Printing

AGGLUTINATION AND AN AGGLUTININ-"BLOCKING" PROPERTY IN SERUMS FROM KNOWN CASES OF BRUCELLOSIS ${ }^{1}$

By James J. Griffitts, Surgeon, United States Public Health Service

The variability of agglutination reactions in certain infectious diseases is well known. In some respects the failure of certain human cases of bacterial infection to exhibit agglutinins is analogous to the earlier serological findings in serums of Rh-negative mothers who had been delivered of infants with erythroblastosis fetalis. Although the disease process was evident, agglutinins for Rh-positive red blood cells could not be demonstrated in approximately one-half the mothers whose infants were so affected $(1,2)$. These tests were performed using saline suspensions of Rh-positive red cells. In 1944, Wiener (3) and Race (4) described an agglutinin-"blacking" phenomenon in serums of individuals sensitized to Rh factor but lacking agglutinins in the usual tests with red cells suspended in physiological salt solution. This phenomenon appeared to depend upon the combination of $\mathbf{R h}$ antigen with a so-called "blocking or incomplete" antibody which rendered the cells insensitive to the later addition of known anti-Rh agglutinins.

Later, Diamond (5) demonstrated the presence of Rh-antibodies in over 99 percent of sensitized mothers by testing the serums with whole blood suspensions of Rh-positive cells on a glass slide. Soon thereafter (6) it was shown that the so-called blocking antibody agglutinated Rh -positive red cells in the presence of sufficient serum, plasma, albumin, and more recently other colloidal reagents (7).

It is believed that the phenomena observed in Rh sensitization are immunological responses though adequate understanding of them is still lacking. If this theory is correct it should be possible to demonstrate similar phenomena in human infectious disease. The ability

[^0]of the serums of individuals infected with Brucella to agglutinate this organism is known to be variable. For example, it is not unusual to find, in cases wherein the disease process continues, that agglutinins fail to appear in significant titer at any time, or, having been once present, the agglutinins disappear. The absence of agglutinins in instances of apparently active disease is not well explained. It is the purpose of this report to record observations of agglutination and agglutinin-blocking phenomena in serums of persons known to have had brucellosis.

EXPERIMENTAL WORK

Brief histories of the individuals from whom serums were drawn are given in table 1. The individuals with positive histories became infected with Brucella in the course of laboratory or field investigations. All had apparently recovered from the disease with the possible exceptions of WA, RC, and FR, who still had occasional recurrence of headaches and muscle aches, at the time this experiment was undertaken. The individuals with negative histories of brucellosis were selected for the probable reliability of their medical histories.

Source of serums.-Blood was obtained by venipuncture, the serum separated, and stored at -18° C. or lower. Small portions were removed on each day of testing after thawing the serum, and the remainder was again stored in the frozen state.

Agglutination titrations.-The routine test for detection of agglutinins for Brucella organisms was performed on all serums in the following manner: A formalized saline suspension of Brucella abortus, N.I.H. strain 456, was adjusted to a turbidity equal to approximately 500 P. P. M. of silica standard. This antigen was added in equal parts to serum diluted $1: 5,1: 10,1: 20$, to $1: 1280$. The tubes containing the serum-dilution-antigen mixtures were shaken and placed in a water bath at $37^{\circ} \mathrm{C}$. for 2 hours. The tubes were then removed and placed overnight in an ice box at $5^{\circ} \mathrm{C}$. The reactions were read by the degree of clearing of the supernatant liquid. Readings of $1: 10$ to 1:20 (complete or incomplete agglutination) are not uncommon in serums of normal individuals.

A modification of this procedure was devised by using the same antigen diluted about three times further than in the routine tests above. This antigen was added to tubes containing serum undiluted, and serums diluted $1: 2,1: 4,1: 8$, etc. The tubes were incubated in a warm room at $37^{\circ} \mathrm{C}$. for 1 hour, agitated for 10 minutes on a Boerner rotating machine, and examined macroscopically, with a strong light source, for agglutination. Considering the insignificance attached to 1:10 and 1:20 readings in the routine test, the results obtained by the two methods were consistent (see table 5). The organisms were
Table 1.-Summary of histories of brucellosis in individuals whose serums were examined

Individual	Date of onset	Duration of syptoms	Blood culture	8kin test	Date of highest known agglutination	Infection		Remarks
						Type	Source	
POSItive history of brucellosis								
AE.........	October 1922..	Over 10 years.		Unknown.-....-.-	1923-1 : 40...........	Melitensis--	Laboratory....	Chronic symptoms; low or absent agglutinins. Vaccine treatment.
AS..........	Spring 1923.-.	Several years. 31/2 years	Unknown	- to suis antigen....	$\begin{aligned} & \text { Ti93-1: }: 5,12 \\ & \text { Tnknnwn } \end{aligned}$	- Bu is do-....-	do-.........	Recurrent attacks. Positive stool cultures.
EF	November 1928	5 months.....		Unknown	Over 1: 1,000	Melitensis..		Typical symptoms.
	February 1934.	4 months...	Unknown.-.	Negative	1937-1 : 100.............	Abortus.	Field or laboratory.	Possible recurrence 1036. Works with virulent organisms.
		5 months.	do	Slight.	1934-1 : 640 \ldots......-	...do-	Field	Treatment with "Brucellin."
EE	April 1938.	3 weeks.	dor	Unknown	1938 report 1:100,000.	.-.-do.-.-.--	Laboratory.--	Accidental conjunctival infection. Rapid recovery.
MA.......	January 1939.	4 months..		1939 negative......-	1944-1 : 200.........	Melitensis...	-do--..-.--	Works with virulent organisms.
	May 1939....	5 months...		Unknown. 1042. Positive	1939-1 : 500	Abortus.	Field	"Brucellin" treatment.
FR	June 1942.....	Over 3 years	Unknown...	$\left\{\begin{array}{l}\text { 1942: Positive..... }\end{array}\right.$	Unknown	Unknown..-	Unknown....-	Vaccine treatment over 3-year period.
WA.......-	February 1944.	8 months..	Negative...-	Unknown.........-	1944-1 : 200..........	Abortus.	Laboratory...	Occasional muscle pains and headaches continue.
RO..........	August 1944. (?)	6 months.... Several years	Unknown..-	- do	$\begin{aligned} & 1944-1: 3,200 \\ & 3-4 \text { years ago-1:600 } \end{aligned}$. .do	Field \qquad Laboratory	Works with virulent organisms.
BP.........	June 1946.	2 months.	do	. .do	1946-1 : 1,280........	Melitensis...		organisms. Apparent recovery.

negative history of brucellogis

Undiagnosed illness 1923 , lasting 3 months; otherwise nothing suspicious.
Undiagnosed illness 1946 of 10 days duration; otherwise not suspicious for
KS
distinctly agglutinated by certain serums，and since no period of sedimentation was allowed，the degree of clearing of the suspending medium was disregarded．

Agglutinin－＂blocking＂phenomenon．－Using the more rapid test method，tubes were examined for agglutination at 1 and 2 hours＇ incubation．At the end of 1 hour，to each tube of one set of duplicate serum－dilution－antigen mixtures was added one drop of serum con－ taining agglutinins in such dilution that organisms in the saline control tubes would be distinctly agglutinated after further incubation of 1 hour and the usual shaking．All tubes were then re－examined for the presence or absence of agglutination．

It was apparent that serums freshly drawn from individuals with histories of brucellosis prevented or weakened（as compared with the agglutination in saline controls）the action of known agglutinin on Brucella organisms．It was also noted that serum freshly drawn from individuals without histories of brucellosis prevented the action of added agglutinin to a somewhat lesser degree．The tests were repeated using $B r$ ．abortus 428 with consistent results．Table 2 illustrates the results of tests with certain serums selected to show

Table 2．－Agglutinin titrations and the＂blocking＂effect of serums when known agglutinin is added to serum and Brucella antigen mixtures

Serum	Test	Dilutions of serum in saline									Contro antigen andsaline saline
		1：2	1：4	1：8	1：16	1：32	1：64	1：128	1：256	1：512	
AE． \qquad JC \qquad MA \qquad RC． \qquad CM \qquad L． \qquad BP \qquad		Positive history of brucellosis									
		$\begin{aligned} & \overline{\overline{\mathbf{W}}} \\ & \hline \mathbf{\mathbf { w }} \\ & \mathbf{W} \\ & \mathbf{+} \end{aligned}$	二 二 二 二 三 二 二	二 二 二 ב ב ב 二	¢ ＝ 二 二 二 二 二 二	$\begin{aligned} & \overline{ \pm} \\ & \bar{w} \\ & \bar{Z} \\ & \bar{Z} \\ & \overline{\mathbf{w}} \\ & + \end{aligned}$	\pm \pm \pm + \mathbf{w} \pm - - + +	$\begin{aligned} & \pm \\ & \pm \\ & \hline+ \\ & + \\ & \mathbf{w} \\ & \frac{+}{w} \\ & \hline \mathbf{w} \\ & + \end{aligned}$	\pm \pm \pm \pm \pm w + + +	\pm \pm \pm \pm \pm \pm \pm +	\pm \pm \pm \pm \pm \pm \pm +
		Negative history of brucellosis									
		二 二 二 二 $=$	二 土 － w	w ＋ $\frac{\text { w }}{+}$	\pm \pm \pm \pm	\pm \pm \pm \pm	\pm \pm \pm \pm	\pm + + + +	\pm \pm \pm \pm +	\pm \pm \pm \pm	\pm \pm \pm \pm

[^1]differences in individual serums. The results of all serums are given in the summary in table 5.

Normal serums have not shown complete or partial blocking when diluted beyond 1:32, while serums from cases with a history of brucellosis blocked agglutination from 1:16 to $1: 256$.

The agglutinating serum used, BP, showed a "zone phenomenon" in which agglutination was weak or absent in serum dilution 1:2 to $1: 32$ (table 2). It is of interest to note that the antigen was not agglutinated by the addition of known agglutinin, a finding which Diamond (2) and Levine (8) have observed in tests with certain antiRh serums. They suggest that such findings are due to the presence of agglutinins and blocking antibodies in the same serum, the agglutinins becoming effective as the lower-titering but avid blocking antibodies are increasingly diluted. Serums MA and RC showed a similar blocking action although agglutinins were demonstrable at greater dilutions of serum.

Since tests with serums of normal individuals stored for several months did not (in contrast to the freshly drawn serums) show an agglutinin blocking effect, fresh serums of normal individuals and of those with brucellosis histories were heated at $56^{\circ} \mathrm{C}$. for 15 minutes. The effect of such heating was to remove the agglutinin-blocking property from serums of normal individuals, from some of those with positive histories, and to reduce this blocking action in serums of others with positive histories. Table 3 illustrates the effect of heating on the blocking property of certain serums.

Serum EF showed little blocking action after heating, and when diluted 1:4 failed to prevent the effect of added agglutinin. However, serum CM after heating showed blocking equal to the relatively high titer noted with unheated serum. Serum MA is included in table 3 to illustrate the effect of heating on a serum which contains agglutinins and exhibits blocking action as well. This serum unheated showed agglutination only in the $1: 64$ dilution, whereas after being heated agglutination was noted in serum dilutions $1: 16,1: 32$, and $1: 64$. A similar effect was noted with serum RC.

This would suggest lability of the blocking property of serums, a finding which may account for the observation that furtber storage of these serums at room temperature and at $5^{\circ} \mathrm{C}$. has led to the demonstration of low-titered agglutinins ($1: 8-1: 64$) in almost all of the serums of those having histories of brucellosis.

Table 5 includes the results of agglutinin-blocking tests with all serums. Serums EF, AE, and EE before and after heating had relatively low titers. Serums CM and L had relatively high blocking titers. Between these two groups were the reactions of the other serums.

Table 3.-Agglutinin titrations and tests for "blocking" effect of serums using freshly drawn unheated and heated serums

Titrations of serums were set up in duplicate. In the "blocking" test the dilnted serum of BP was added $s 0$ that the final dilution of this agglutinating serum was $1: 91$ in each tube. The agglutinin was added at the end of 1 hour's incubation. All tubes were incubated 1 hour more, shaken 10 minutes, and read for agglutination.

Antigen $=$ Brucella melitensis N. I. H. strain 428.
W =Agglutination weaker than in saline control.
Agglutination titrations using serum as the diluting medium.-Following the demonstration of an agglutinin-blocking phenomenon, the possibility of demonstrating agglutinins by other techniques used in testing serums for Rh -antibodies of the blocking type was investigated. One such method employs the serial dilution of serum to be examined in a "neutral" serum, plasma, or albumin solution. The antigen also is suspended in a protein-containing medium. Under such conditions reactions may be shown with Rh positive red blood cells, although the serum when titrated in a saline diluent would fail to react with $\mathbf{R h}$ positive cells.

Serums were diluted serially with human pooled plasma or serum, normal rabbit serum, and with albumin solutions. The latter in the proportions used were not satisfactory, and investigations are continuing to adapt this material to the test. In the tests described below serums from 10 normal rabbits were pooled. On mixing this serum with human serum a precipitate was noted which was removed by adding human pooled plasma and centrifuging the mixture after 1 hour's incubation. The supernatant serum gave no precipitate and did not agglutinate Brucella organisms.

The serums tested were diluted in serial twofold dilutions; the rabbit serum described above was used as a diluent. The cells of a heavy saline suspension of Brucella melitensis 428 were packed by centrifuging, and a suspension equal to 0.5 percent by volume of bacterial cells in rabbit serum was prepared. Equal parts of this suspension were added to serum dilutions; the tubes were incubated for 1 hour at $35^{\circ} \mathrm{C}$.; shaken for 10 minutes on the rotating machine, and examined for agglutination. An illustrative protocol is shown in table 4.

Table 4.-Agglutinin titrations of serums using saline and rabbit serum as a diluent

Serum	Diluent	Serum dilutions								
		1:4	1:8	1:16	1:32	1:64	1:128	$1: 256$	$1: 512$	1:1024
CM.... L. \qquad	$\left\{\begin{array}{l} \text { Saline-.................. } \\ \text { Absorbed rabbit serum } \\ \text { Saline } \\ \text { Absorbed rabbit serum. } \end{array}\right.$	Positive history of brucellosis								
		-	-	-	-	-	-	-	-	-
		+	+	+	$+$	$+$	$+$	-	-	-
		ד	+	+	+	+	+	+	二	-
		Negative history of brucellosis								
	SSaline	-	-	-	-	-	-	-	-	-
	fSaline.................-	-	-	-	-	-	-	-	-	-
KH.....-	Absorbed rabbit serum	-	-	-	-	-	-	-	-	-

Brucella melitensis N. I. H. strain 428 as the antigen.
Tubes incubated 1 hour, then shaken 10 minutes.
Serums of all individuals gave as high or higher agglutinin titers in serum diluent than in saline. This was noted with serums showing no agglutination in saline (EF, BS, and AC) as well as serums MA, RC, and BP which had agglutinins operative in saline medium (table 5). Serums of individuals with negative histories of brucellosis did not agglutinate organisms in the presence of the rabbit serum above a serum dilution of $1: 8$.

The character of the aggregates in the serum medium differed from the clumps in saline in that the masses were more fragile and tended to be readily dispersed on vigorous shaking. The reactions obtained with serums CM and L in the presence of rabbit serum represent a marked increase over the titer in saline medium.

Individuals from whom serums CM, L, RC, and MA were obtained, continue to work actively with the organisms in the field and laboratory. The others have had little or no deliberate contact with Brucella.

The finding that reactions occurred in the presence of serum may account for the occurrence of agglutination in certain serums when the undiluted serum is combined with antigen, as shown in table 2.

Serums MA, RC, CM, L, and BP show weak agglutination when mixed with an equal volume of saline-suspended antigen.

Reactions with serum and antigen on glass plates.-The mixture of a whole-blood suspension of Rh-positive cells on a heated glass plate with a serum from a sensitized individual is a reliable method of testing for Rh sensitization. The degree of reaction depends in part at least upon the presence of abundant antigen, sufficient protein (serum, plasma, or albumin), the heat of the glass plate, and agitation of the mixture.

Heavy suspensions of Brucella organisms suspended in saline are used extensively in the diagnosis of brucellosis in cattle and in man $(9,10)$. This antigen is usually treated with steam and often has gelatin added to promote the sensitiveness of the antigen. Several of the serums examined had been titered with such antigen and had given reactions which had been interpreted as negative.

Heavy suspensions of formalin-killed Brucella melitensis (N. I. H. strains 428 and 2705^{2}) in saline were centrifuged and the packed cells resuspended in normal saline and in rabbit serum to make 10 to 20-percent suspensions of Brucella organisms. After thorough mixing the antigen was placed on a clear glass plate. An equal amount of undiluted serum was placed on the plate, mixed with the antigen, and spread over an area about 25 to 30 mm . in diameter. The glass plate was held in a viewing box having a dark background and a light source which also heated the plate to approximately $50^{\circ} \mathrm{C}$. The box was tilted back and forth to agitate the mixtures.

Clear-cut agglutination reactions resulted in 5 to 15 seconds with serums which contained agglutinins demonstrable in tubes using saline as a medium (serums MA, BP, and RC). These serums agglutinated antigen suspended in saline or serum. Serums from other cases with positive histories gave plate reactions only with organisms suspended in rabbit serum. The time of beginning agglutination with these serums was within 90 seconds (see last column of table 5).

As evaporation of liquid from the mixture proceeded, false clumping was noted in almost all serums examined on the plate. The addition of a drop or two of saline to the serum-antigen mixtures after 2 minutes caused the disappearance of clumping in serums of individuals with no histories of brucellosis but did not weaken the clumping in serums of individuals with positive histories. A time limit of 2 minutes for reading the reaction reduced the occurrence of false positive reactions.

It was noted that the reactions on the glass plate when Brucella

[^2]Table 5.-Summary of agglutination and agglutinin "blocking" reactions in serums

[^3]melitensis N. I. H. strain 2705 was used were more distinct than when either Brucella melitensis N. I. H. strain 428 or Brucella abortus N. I. H. strain 456 was used.

It was also found that the addition of 30 percent albumin (human or bovine) solution in equal parts with heavy saline suspensions of Brucella gave excellent results with serums in plate tests.

discussion

The observations presented seem to parallel those reported in tests for Rh sensitization. The finding that agglutinin-blocking substance is present in serum of certain individuals who have had brucellosis may account, in part, for the absence of agglutination in saline systems of testing. The results obtained by using heavy suspensions of Brucella organisms in serum or albumin on a warmed glass plate were distinct and indicate that this method may be useful as a screening test in examining serums for evidence of sensitization to Brucella.

CONCLUSIONS

1. Serums freshly drawn from individuals known to have been infected with Brucella have the property of "blocking" the agglutination of Brucella organisms in a saline medium. This property is present to a lesser degree in freshly drawn normal serum.
2. This agglutinin-blocking property appears to be labile, as it disappears from normal serums on heating ($56^{\circ} \mathrm{C}$. for 15 minutes) and is reduced in effectiveness in the serums of persons who have had brucellosis.
3. Serums shown to have agglutinin-blocking properties agglutinate Brucella organisms when rabbit serum is used in place of physiological saline as a diluent for titrations and as a suspending medium for Brucella organisms.
4. Serums from certain individuals known to have had brucellosis agglutinate heavy suspensions (10 to 20 percent by volume) of Brucella organisms suspended in serum or albumin solution on a warmed glass plate, though agglutination titrations in test tubes with saline may be negative.

ACKNOWLEDGMENT

The cooperation of Doctors J. C. Crawford and H. W. Schoening and their associates in the Bureau of Animal Industry, U. S. Department of Agriculture, in providing some of the serums used is gratefully acknowledged.

Nots.-The recently reported work of Morgan and Shütze (11) using anti-human-globulin rabbit serum to demonstrate "nonagglutinating" antibodies in the serums of vaccinated individuals was noticed after the observations presented here were completed. No blocking properties were found in serums by their methods.

RNWERENCES

(1) Levine, P.; Burnham, L.; Katzin, E. M.; and Vogel, P.: Role of iso-immunization in pathogenesis of erythroblastosis fetalis. J. Obst. and Gynec., 42: 925 (1941).
(2) Diamond, L. K., and Denton, R. L.: Rh agglutination in various media with particular reference to value of albumin. J. Lab. \& Clin. Med., 30: 821 (1945).
(3) Wiener, A. S.: New test (blocking test) for Rh sensitization. Proc. Soc. Exper. Biol. \& Med., 56: 173 (1944).
(4) Race, R. R.: "Incomplete" antibody in human serum. Nature, 153: 771 (1944).
(5) Diamond, L. K., and Abelson, N. M.: Detection of Rh sensitization; evaluation of tests for Rh antibodies. J. Lab. \& Clin. Med., 30: 668 (1945).
(6) Wiener, A. S.: Conglutination test for Rh sensitization. J. Lab. \& Clin. Med., 30: 662 (1945).
(7) Levine,' P.: The present status of the Rh factor. Am. J. Clin. Path., 16: 597 (1946).
(8) Levine, P., and Waller, R. K.: On the blocking antibody and the zone phenomenon in human anti-Rh sera. Science, 103: 389 (1946).
(9) Eichhorn, A.; and Crawford, A. B.: Brucellosis of cattle. Farmers Bull. No. 1871, p. 9 (U. S. Dept. Agr. 1941).
(10) Huddleson, I. F.: Brucellosis in man and animals. New York Commonwealth Fund, 1943.
(11) Morgan, W. T. J. and Schütze, H.: Nonagglutinating antibody in human antisera to Sh. shiga and S. typhi. Brit. J. Exp. Path., 27: 286 (1946).

A STUDY OF MURINE TYPHUS FEVER IN COFFEE COUNTY, ALABAMA ${ }^{1}$

By Elmer L. Hill, Senior Assistant Surgeon, and Samuel C. Ingraham II, Senior Assistant Surgeon, United States Public Health Service

INTRODUCTION

Murine typhus fever has long been a problem in the southern United States. Although cases were diagnosed as early as 1913, considerable numbers were not reported until after 1926 when rodents were first implicated in the transmission of the disease to humans (1). In 1935 there were 1,287 cases, whereas in 1944 there were 5,337 cases (2) officially reported in the United States.

In November of 1943, a combined typhus control and typhus investigation program was begun in Coffee County, Alabama, with the United States Public Health Service, Alabama State Health Department, and the County Health Department cooperating. This study area was selected because of its consistently high reported incidence of typhus fever over the past several years and because the population is predominantly rural, affording an opportunity to study the feasibility of rural typhus control.

Coffee County lies between 31° and 32° north latitude, and 86° west longitude passes through its center. The terrain is hilly. The red clay and sandy soil has been subjected to considerable erosion. The

[^4]principal crops are peanuts, corn, and cotton. There is also a minor pulpwood industry derived from the natural pine growth throughout the county. Several years ago the boll weevil caused many of the farmers to discontinue growing cotton and to embark upon peanut production. There are rather poor housing and crop storage facilities throughout the county. Most of the existing structures could not be ratproofed economically enough to warrant such a procedure. Typhus in this county is representative of the occurrence of murine typhus fever in those areas from which the large majority of cases are reported each year in the United States.

Typhus control operations included a limited amount of ratproofing in some of the towns and extensive use of various rat eradication procedures throughout the county. Trapping operations were conducted for the purposes of obtaining rat blood specimens for serological study and for securing information concerning the ectoparasites of rats. Within a 9 -month period, at least two visits were made to each farm in the area.

At the same time that rat eradication and trapping activities were being carried out, a door-to-door survey was made to locate individuals with a history of having had typhus fever during 1943. Although only 61 cases of typhus fever were officially reported, 211 persons said they had had the disease. Wherever a reputed case of typhus fever was found, a follow-up visit was made by a physician or a nurse. Blood specimens were obtained on 177 of the 211 reputed cases. Two of the 34 remaining cases had died from typhus; 2 refused to give a blood specimen; 29 could not be located; and one attempt at vena puncture was unsuccessful.

HUMAN CASE STUDIES

Laboratory tests were considered confirmatory if the typhus com-plement-fixation test was positive in a $1: 16$ dilution or higher pr if the proteus $\mathrm{X}-19$ agglutination test yielded a titer of 2 plus in a $1: 160$ dilution or higher. There were two cases, considered confirmed, which gave clinical histories of typhus fever and the following serological results:

1. Specimen 160 on E. B. drawn 12 months after his illness:

1 plus in 1:4 dilution of typhus complement-fixation test. (NIH and Alabama)
2 plus in 1:80 dilution of proteus $\mathrm{X}-19$ agglutination test. (NIH)
1 plus in 1:80 dilution of proteus $\mathrm{X}-19$ agglutination test. (Alabama)
2. Specimen 194 on S. P. drawn 15 months after his illness:

1 plus in 1:4 dilution of typhus complement-fixation test. (NIH and Alabama)
1 plus in 1:40 dilution of proteus X-19 agglutination test. (NIH)
Of the 177 individuals from whom blood specimens were obtained, 115 gave positive typhus complement-fixation tests; 18 gave positive
proteus $\mathrm{X}-19$ agglutination tests without the complement-fixation tests being done; 2 had positive proteus X-19 agglutination tests and negative complement-fixation tests. There were two additional cases which terminated fatally without laboratory confirmation, making a total of 137 cases which were considered as positive. (See table 1.) Assuming that the same ratio of positivity would exist among the 32 who were not examined, it may be estimated that 160 of the 211 individuals giving a history of typhus fever were actually ill with this disease during 1943. Consequently, the 1943 estimated morbidity rate for murine typhus fever in Coffee County was 500 per 100,000 population.

Among the 42 specimens giving negative serological findings for typhus, there were 16 with agglutinations with proteus $\mathrm{X}-19$ in dilutions less than 1:80, whereas the complement-fixation tests on these specimens were negative. Of the 211 alleged cases of typhus fever, 76 percent were confirmable by laboratory tests. On the other hand, only 61 cases were actually reported, representing 44 percent of the 137 known positive cases.

Table 1.-Confirmation studies on 211 reputed cases of murine typhus fever

	Positive ${ }^{\text {d }}$	Negative ${ }^{2}$	Unknown_ ${ }^{3}$	Total
Number of cases.	137	42	32	211

[^5]Distribution of the 137 confirmed cases into 5- or 10-year age groups results in numbers which are too small to justify comparison of such groups. This is particularly true since the 1940 census, the only available base line for these comparisons, is inaccurate in those age groups which have been affected by military service. However, the difference in morbidity rates for those under 30 years of age as compared with those 30 and over is statistically significant and can probably be explained by differences in daily activities. (See table 2.) Also, the difference in male and female morbidity rates is probably caused by the greater occupational exposure of males. Although only 8 percent of the established cases are among Negroes, 20.5 percent of the population is made up of Negroes. This apparent discrepancy is
probably caused by a combination of the factors which result in the poorer reporting of all diseases among Negroes. (See table 2.)

Table 2.-Incidence of confirmed typhus fever by age, sex, and race for 1945, based on the 1940 census

Based upon the 137 confirmed cases of typhus fever arranged by month of occurrence, two peaks of typhus incidence appear in 1943, one in July and the other in October. A similar tendency toward two peaks of incidence is seen when cases officially reported during the period from 1942 through 1944 are arranged by months in which the cases are reported. (See tables 3 and 4.) The numbers of cases involved are too small to establish proof of significance in themselves. However, the consistent occurrence of this phenomenon is of interest and may be related to the fact that in late summer grain crops are harvested and stored in granaries and cribs and later in the fall peanuts are thrashed. Both of these activities involve dusty occupations in places which are usually heavily infested with rats.

Table 3.-Distribution of 185 confirmed cases of typhus fever by months of onset in 1948

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Typhus cases..............	3	3	2	4	10	10	23	9	17	23	19	12

Norz.-Month of onset was not determined in 2 other cases.
Table 4.-Consolidated monthly reporting of typus fever for 1942, 1943, and 1944 by month of reporting

	Jan.	Feb.	Mar.	Apr.	May.	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Typhus cases...................	5	4	2	2	5	5	23	28	13	9	28	15

The probability of acquiring typhus fever in Coffee County, Alabama, appears to be about the same for rural and urban residents. (See table 5.) No attempt was made to trace the source of each case because of the lapse of several months from the time of illness to the time of getting a history.

Table 5.-Distribution of 1943 typhus cases by place of residence

Residence	1940 census		Serological confirmation				
	Popula-tion	Percent	Confirmed		Not confirmed	Not examined	Total
			Number	Percent			
Residence in town. Residence on farm	$\begin{array}{r} 4,353 \\ 27,634 \end{array}$	13.686.4	22	16	4	3	29
			115	84	38	29	182
Total	31, 987	100.0	1137	100	42	32	211

${ }^{1}$ Two of these cases terminated fatally.

RODENT RESERVOIR STUDIES

A study of rodent serology throughout the county indicates that typhus infection of rodents is quite widespread. History of human cases frequently points to exposure during grain-harvesting or peanutthreshing seasons.

Of 430 rat bloods collected on farms, 42 percent gave positive complement-fixation tests. (See table 6.) Fifty-three percent of 261 farms yielded one or more rats with a positive reaction. (See table 7.)

Table 6.-Complement-fixation tests of rat blood specimens collected from rats trapped on farms, March-July, 1944

	R. norvegicus			R. rattus			Total rats		
	Number	Number	Percent	Number	Number	Percent	Number	Number	Percent
	negative	positive	positive	negative	positive	positive	negative	positive	positive
Month:									
March	14	12	46	17	6	26	31	18	37
April.	32	32	50	11	22	67	43	54	56
May--	42	14	25	12	18	60	54	32	37
Juny--	22 18	15 9	40 33	19 60	$\stackrel{22}{33}$	54 35	78	37 42	47 35
Total	128	82	39	119	101	46	247	183	42
							430		

Table 7.-Degree of farm infection as determined by complement-fixation reaction of rat blood specimens collected

	R. norvegicus			R. rattus			R. rattus and R. norvegicus			Total rats		
	Farms negative	Farms positive	Percent positive	Farms negative	Farms positive	Percent positive	Farms negative	Farms positive	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { posi- } \\ & \text { tive } \\ & \hline \end{aligned}$	Farms positive	Farms negative	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { posi- } \\ & \text { tive } \\ & \hline \end{aligned}$
Month: March	7								86	14	16	53
April.	11	19	63	4	15	79	0	2	100	15	36	70
May	25	12	44	7	15	68				32	27	46
June...-...--	13	11	46	11	18	62				24	29	55
July....-.----	7	5	42	31	23	42	0	2	100	38	30	44
Total...	63	54	46	59	74	56	1	10	91	123	138	53
										$2{ }^{\circ}$		

As indicated in table 8, the success in demonstrating infection varies directly with the number of rats tested per farm. Both species of domestic rats (Rattus rattus and Rattus norvegicus) were found in this county in about equal numbers, and, in conformity with other experience, it was uncommon to trap the two species on the same farm. (See table 7.)

Table 8.-Variability of degree of farm infection when 1, 2, 3, 4, or 5 rats were tested per farm

Number of rat blood specimens per farm	Number of farms negative	Number of farms positive	Percent of farms positive
1.	88	54	38
2.	24	54	69
3.	11	24	69
4.	0	4	100
5.	0	2	100
Total	123	138	53
	261		

RODENT ECTOPARASITE STUDIES

The following species of ectoparasites were collected: Xenopsylla cheopis, Echidnophaga gallinacea, Leptopsylla segnis, Echinolaelaps echidninus, Liponyssus bacoti, Polyplax spinulosa. A few other species of ectoparasites were present in insignificant numbers.

The series of rats on which both serological and ectoparasite studies were made was too small to justify a break-down by combinations of ectoparasites. However, a study of the association of serological results with the presence or absence of Xenopsylla cheopis tends to verify the impression that conditions which result in X. cheopis infestation of rats predispose to typhus infection in rats in this area. (See table 9.)

Table 9.-Comparison of the typhus serology of rats with their Xenopsylla cheopis infestation

${ }^{1} x / \sigma=4.73-2 P=0.0000$?
${ }^{2}$ The symbol P as used above expresses the probability of obtaining by chance, when the true difference is zero, a sample difference as great or greater than that obtained.

SUMMARY AND CONCLUSIONS

1. 500 typhus cases per 100,000 population can be considered the human morbidity rate of murine typhus fever for 1943 in Coffee County, Alabama.
2. Of 211 reputed typhus cases in 1943, serologic tests were done on 177, and of these 135 were positive for typhus. In addition, there were two deaths attributed to typhus (table 1).
3. A comparison of morbidity rates of the population under 30 years of age and the population 30 years and over shows a statistically significant difference probably attributable to conditions of greater exposure of those 30 years of age or older (table 2).
4. There is a significantly greater typhus morbidity rate among males than among females in Coffee County. This is consistent with the theory of greater exposure of the male population (table 2).
5. There were two deaths attributed to typhus fever out of 160 estimated cases-a case fatality rate of 1.25 percent.
6. When the 1943 cases are arranged by date of onset, there are two peaks of incidence, one in July and the other in October. When cases which were reported to the health department during the period 1942 through 1944 are arranged by date of reporting, there are similar summer and fall peaks which exhibit a lag of one month behind the curve based on date of onset (tables 3 and 4).
7. Of the 137 confirmed typhus cases, 115 (84 percent) were among rural residents, and 22 (16 percent) were among urban residents. The difference in rural and urban typhus rates in Coffee County is both practically and statistically insignificant. The probability of acquiring typhus fever in this county is about the same for rural and urban residents (table 5).
8. That there is widespread typhus infection among rats in the rural portion of the county is indicated by the fact that of blood specimens from 430 rats trapped on farms, 42 percent were positive for typhus complement-fixing antibodies (table 6).
9. Of 261 farms, 138 (53 percent) yielded one or more rats with positive serologic reactions for typhus. This percentage probably would have been much larger if three or more rats had been trapped on each farm (tables 7 and 8).
10. In this experience, infection of rats with typhus (as indicated by the complement-fixation test) is directly proportional to infestation with Xenopsylla cheopis (table 9).

REFERENCES

(1) Maxcy, Kenneth F.: An epidemiological study of endemic typhus (Brill's disease) in the southeastern United States. Pub. Health Rep., 41: 2967-2995 (Dec. 24, 1926).
(2) Public Health Reports: Prevalence of disease, United States, weekly State reports, 60: 76 (Jan. 19, 1945).

INCIDENCE OF COMMUNICABLE DISEASES IN THE UNITED STATES

April 20-May 17, 1947

The accompanying table summarizes the incidence of nine important communicable diseases, based on weekly telegraphic reports from State health departments. The reports from each State for each week are published in Public Health Reports under the section "Incidence of Disease." The table gives the number of cases of these diseases for the 4 weeks ended May 17, 1947, the number reported for the corresponding period in 1946, and the median number for the years 1942-46.

DISEASES ABOVE MEDIAN INCIDENCE

Diphtheria.-For the 4 weeks ended May 17 there were 785 cases of diphtheria reported. The number of cases was less than 80 percent of the incidence during the corresponding period in 1946, but it was slightly higher than the 1942-46 median. The greatest increases over the normal seasonal expectancy were reported from the New England and Middle Atlantic sections. In other sections the incidence either closely approximated the preceding 5 -year median or fell below it.

Influenza.-The number of reported cases of influenza dropped from approximately 121,000 during the preceding 4 weeks to 15,461 during the 4 weeks ended May 17. The incidence was 4 times that recorded for the corresponding period in 1946 and 3 times the 1942-46 median. The recent influenza epidemic reached its peak about the middle of March, but the number of cases was still considerably above the normal seasonal expectancy in all sections except the Middle Atlantic and Pacific sections. Due, no doubt, to the rather late appearance of the rise in this disease the current incidence was the highest recorded for this period in the 19 years for which data are available in this form; the excesses ranged from 1.4 times the median in the East North Central section to almost 7 times the median in the New England section. For several weeks at the beginning of the recent epidemic the incidence was confined to a few States in the Southern and Western sections, but it eventually spread into all regions, reaching the North Atlantic sections last, and, while the numbers of cases were not large in those sections, they have represented considerable increases over the normal seasonal expectancy.

Poliomyelitis.-The number of cases (126) of poliomyelitis was only 60 percent of the cases reported during the corresponding period in 1946, but it was 10 percent above the 1942-46 median. The excess over the seasonal median was largely due to an increase in the number of cases in the Middle Atlantic, West North Central, and Pacific sections. New York reported 13 of the cases that occurred in the

Middle Atlantic section; in the West North Central section each State except South Dakota reported some cases, while in the Pacific section the cases (43) were all reported from California. In other sections the incidence was about the same as the median or fell below it.

Whooping cough.--For the 4 weeks ended May 17 there were 14,589 cases of whooping cough reported, as compared with 8,037 for the corresponding period in 1946, and a 5 -year (1942-46) median of 10,548 cases. The New England section reported a decrease from the preceding 5-year median; in the Middle Atlantic and Pacific sections the incidence was about normal, but all other sections reported a relatively high incidence. The most significant increase was reported from the West South Central section where the number of cases $(3,432)$ was 3 times the seasonal median.

DISEASES BELOW MEDIAN INCIDENCE

Measles.-The incidence of measles continued at a relatively low level. For the 4 weeks ended May 17 there were 34,109 cases reported, as compared with 147,499 for the corresponding period in 1946 and a 1942-46 median of 104,755 cases. Each section of the country has shared in the favorable situation of this disease that has existed since the latter part of 1946. With the exception of the year 1945, which was a very low measles year (19,000 cases for these 4 weeks), the current incidence was the lowest since 1940.

Meningococcus meningitis.-The number of cases (331) of meningococcus meningitis reported for the current 4 weeks was about 80 percent of the number reported for the corresponding period in 1946 and less than 50 percent of the 1942-46 median. The number of cases in each section was below the seasonal median and for the country as a whole the incidence was the lowest since 1941 when 181 cases were reported for the same 4 -week period.

Scarlet fever.-This disease also continued at a relatively low level, the 7,989 cases reported for the current 4 weeks being less than 60 percent of the number reported for these same weeks in 1946 and about 50 percent of the 1942-46 median. The number of cases reported from each section was below the seasonal median expectancy. This disease has been on the decline since the latter part of 1945, each 4 -week period being lower than its corresponding period in the preceding year.

Smallpox.-For the 4 weeks ended May 17 there were 39 cases of smallpox reported. In 1946 there were 41 cases reported during the corresponding 4 weeks and the 1942-46 median was 48 cases. Of the total cases, New Mexico reported 7, Indiana, Wisconsin, and Missouri, 5 each, Kentucky 3, and no more than 2 cases were reported from any other State. In New York City where an outbreak received
widespread attention the last 2 cases were reported during the week ended May 3, making a total of 14 cases around New York City and its environs. Cases of smallpox have occurred from time to time in practically all other sections of the country, but this is the first occurrence of smallpox in New York since 1939.

Typhoid and paratyphoid fever.-Although the number of cases (255) of these diseases was slightly above that reported for the corresponding weeks in 1946, the incidence was still at a relatively low level, being 10 percent below the 1942-46 median. With the exception of 1946 (249 cases) the current incidence was the lowest since 1943 when 244 cases were reported for the corresponding 4 weeks.

Number of reported cases of 9 communicable diseases in the United States during the 4-week period April 20-May 17, 1947, the number for the corresponding period in 1946, and the median number of cases reported for the corresponding period, 1942-46

Division	$\begin{aligned} & \text { Curren } \\ & \text { period } \end{aligned}$	1946	$\left\lvert\, \begin{gathered} \text { 5-year } \\ \text { median } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Current } \\ \text { period } \end{gathered}\right.$	1946	$\left\lvert\, \begin{gathered} \text { 5-year } \\ \text { median } \end{gathered}\right.$	Current period	1946	5-year median
	Diphtheria			Influenza :			Measles ${ }^{\text {a }}$		
United States New England Middle Atlantic. East North Central South North Central South Atlantic West South Central Mountain. Pacific.	785	1,068	780	15, 461	3,873	5,210	34, 109	147, 499	104,755
	52 177 178	48 173			${ }_{44}^{9}$	$\begin{array}{r} 9 \\ 41 \end{array}$	7,818	13, 252	9,578
	100	148	117	277	170	200	- ${ }^{\mathbf{6}, 424}$	28, 564	-19,422
	74	137	73	857	23	93	3,967	5,337	7,512
	114	187	142	7,254	1,232	1,399	3,771	12,944	7,852
	51 98	52	57	1,371	1117	- 374		2,796	2,269
	96 57	148	148	4, 883	${ }_{12}^{1,983}$		2,066		6, 5.039
	64	107	99	230	83	244	1,082	16, 905	16,905
	Meningococcus meningitis			Poliomyelitis			Scarlet fever		
United States...... Middle Atlantic. East North Central West North Central South Atlantic East South Central West South Central Mountain. Pacific	$\begin{array}{r} 331 \\ 20 \\ 53 \\ 73 \\ 34 \\ 50 \\ 50 \\ 38 \\ 35 \\ 3 \\ 35 \end{array}$	428		128			7,989	13,617	15,612
		25	$\begin{array}{r}48 \\ 156 \\ \hline 18\end{array}$	3	8	5	${ }_{6} 692$	1, 271	2,023
		88	${ }_{133}^{156}$	${ }_{9}$	${ }_{8}^{8}$		2,303		${ }_{4}^{4,013}$
		34	49	17	13	8	681	914	1,153
		54	${ }^{93}$	15	66	20	503	1,276	1,276
		35	${ }_{68}^{71}$	${ }^{5}$	42		237 142 1	${ }_{277}^{283}$	
		$\begin{array}{r}38 \\ 4 \\ \hline\end{array}$	68 15	${ }_{5}^{15}$	42 24 24	26 3	${ }_{319}^{142}$	277	319
		47	${ }_{93}$	43	29	12	622	888	888
	Smallpox			Typhoid and para-typhoid fever			Whooping cough ?		
United States	39					286	14,589	8,037	10,548
New England.-....	0	0	0	23 27	7 31	$\begin{array}{r}14 \\ 38 \\ \hline\end{array}$, 889	${ }^{8} 1985$	1,110 2
Middie Atlantic.--	2 11	16	18	27 58	${ }_{28}^{31}$	${ }_{39}$	2, 21.588	1,	
West North Central.	10	6	${ }^{8}$	10	16	15	2,508	1, 324	, 343
South Atlantic.	2	2	3	31	48	51	2,066	1,143	1,506
Wast South Central.	3 2 2	0 3 3	$\begin{array}{r}7 \\ 5 \\ \hline\end{array}$	19 49	${ }_{64}^{16}$	${ }_{68}^{39}$	3,439	${ }_{911}^{216}$	1,172
West South Central.	9 9	${ }_{3}^{3}$	5 3 3	${ }^{49}$	${ }^{64}$	16.	${ }^{3,432}$	911 479	1,623
Pacific....	0	11	3	32	24	19	1,617	613	1,633

[^6]
MORTALITY, ALL CAUSES

For the 4 weeks ended May 17 there were 36,937 deaths from all causes reported to the National Office of Vital Statistics by 93 large cities. The median number reported for the corresponding period in 1944-46 was 36,294 . Each week of the period showed some increase over the preceding 3 -year median, but the largest increase occurred during the last week when the number of deaths represented an increase of 4.8 percent over the median.

DEATHS DURING WEEK ENDED MAY 17, 1947

[From the Weekly Mortality Index, issued by the National Office of Vital Statisticsl

-	Week ended May 17, 1947	$\begin{gathered} \text { Correspond- } \\ \text { ing week, } \\ 1946 \end{gathered}$
Data for 93 large cities of the United States:		
Total deaths	9,331	8,801
Median for 3 prior years.	8,906	
Total deaths, frst 20 weeks of year	198,445	196, 267
Median for 3 prior years.	613	
Deaths under 1 year of age, first 20 weeks of year	15,841	12,218
Data from industrial insurance companies:		
Number of death claims.	67, 292, 11,647	67,171,251
Death claims per 1,000 policies in force, annual rate	'9.0	9.3
Death claims per 1,000 policies, first 20 weeks of year, annual rate.	10.0	10.7

INCIDENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

REPORTS FROM STATES FOR WEEK ENDED MAY 24, 1947

Summary

A total of 33 cases of poliomyelitis was reported for the week, as compared with 39 last week, 77 for the same week last year, and a 5 -year (1942-46) median of 39 . Of the current total, California reported 10 (last week 15), Texas 5, Florida 3, and 11 other States 1 or 2 cases each. Since the week ended March 15 (the approximate average date of seasonal low incidence), 300 cases have been reported (same period last year, 421), of which 220 occurred in the 10 States reporting 8 or more cases each for the period, as follows (last year's corresponding figures in parentheses): New York 30 (35), Illinois 12 (13), Michigan 9 (4), Missouri 8 (4), North Dakota 9 (1), Nebraska 9 (0), Florida 17 (89), Louisiana 10 (17), Texas 23 (68), California 93 (52).

Only 4 cases of smallpox were reported for the week-1 case each in Ohio, Georgia, Louisiana, and Texas. The total for the year to date is 131, as compared with 216 for the corresponding period last year, 241 for the 5 -year median, and 211 , the lowest number reported for a corresponding period in the past 5 years (in 1945).

A total of 555 cases of dysentery (amebic, bacillary, and undefined), was reported for the week, as compared with 666 for the corresponding week last year. The combined total to date is 11,323 , as compared with 9,790 for the period last year, and 7,621 for the combined medians of the past 5 years.

Of 88 cases of typhoid and paratyphoid fever reported (last week 47, 5 -year median 68), 14 occurred in Texas (last week 8), 12 in Illinois (last week 1), 8 in Ohio (last week 3), and 7 in Tennessee (last week 2). The cumulative total is 1,024 , slightly below the 5 -year median.

A total of 3,995 cases of whooping cough was reported for the week, as compared with 3,801 last week, 1,914 for the corresponding week last year, and a 5 -year median of 2,540 . The cumulative figure is 59,710 , as compared with 38,940 for the period last year and a 5 -year median of 52,392 .

Deaths recorded during the week in 93 large cities of the United States totaled 8,923 , as compared with 9,331 last week, 8,878 and 9,033 , respectively, for the corresponding weeks of 1946 and 1945 , and a 3 -year (1944-46) median of 8,878 . The cumulative total is 207,368 , as compared with 205,145 for the corresponding period last year.

Telegraphic morbidity reports from State health officers for the week ended May 24, 1947, and comparison with corresponding week of 1946 and 5-year median
In these tables a zero indicates a definite report, while leaders imply that, although none was reported, cases may have occurred.

[^7]4 Dates between which the approximate low week ends. The specific date will vary from year to year.

Telegraphic morbidity reports from State health officers for the week ended May 24, 1947, and comparison with corresponding week of 1946 and 5-year median-Con.

[^8]Telegraphic morbidity reports from State health officers for the week ended May 24, 1947, and comparison with corresponding week of 1946 and 5-year median-Con.

The figures in the following table are the totals of the monthly morbidity reports received from the State health authorities for January, February, and March 1947. These reports are preliminary and the figures are therefore more or less incomplete and subject to correction by final reports. In most instances they include cases reported in both civilian and military populations. The comparisons made are with similar preliminary reports; but, owing to population shifts in many States since the 1940 census, the figures for some States may not
 monthly report for his State all diseases that are required by law or regulation to be reported in the State, although some do not do so. The lists of diseases required to be reported are not the same for each State. Only 11 of the common communicable diseases are notifiable
 the completeness of reporting of cases of the notifiable diseases; therefore, comparisons as between States may not be justified for certain
 culosis, while in many States other diseases, such as puerperal septicemia, rheumatic fever, and Vincent's infection, are not reportable.
 by providing a comparison with similar preliminary figures for prior years. The table gives a general picture of the geographic prevalence of certain diseases, as the States are arranged by geographic areas.
Leaders are used in the table to indicate that no case of the disease was reported.
Consolidated monthly State morbidity reports for January, February, and March 1947

Division and State	$\underset{\text { thrax }}{\text { An- }}$	Chickenpox	junctivitis 1	Diph theria	$\left\|\begin{array}{c} \text { Dysen- } \\ \text { teryy } \\ \text { mebic } \end{array}\right\|$	$\begin{aligned} & \text { Dysen- } \\ & \text { tery, } \\ & \text { bacil- } \\ & \text { lary } \end{aligned}$	$\begin{aligned} & \text { Dysen- } \\ & \text { tery, } \\ & \text { unde. } \\ & \text { fined } \end{aligned}$	$\begin{aligned} & \text { En- } \\ & \text { cephs } \\ & \text { litis, } \\ & \text { infec- } \\ & \text { tious } \end{aligned}$	$\begin{gathered} \text { Ger- } \\ \text { man } \\ \text { mae- } \\ \text { sles } \end{gathered}$	Hookdisease	$\underset{\text { enza }}{\text { Influ- }}$	$\begin{gathered} \text { Ma- } \\ \text { laria } \end{gathered}$	$\begin{aligned} & \text { Mea- } \\ & \text { sles } \end{aligned}$	Meningitis gococcus*	Mumps	Ophmia	$\begin{gathered} \text { Pella- } \\ \text { gra- } \end{gathered}$	Pneumonia, forms
new england																		
Maine	1	951		35	1			1				6	3,053	7	1,082			235
New Hampshire.		349 753		1	1				${ }_{60}^{29}$		251	-	2592	2	${ }_{199}$			59 47
Massachusetts.	i	8, 000	85	207	5	32		3	320				${ }^{\text {5, }}$, 697	20	2,511	348		442
Rhode Island.....											10	12	2,189					100
Connecticut.........		3,768	21	4	2			2	133		16	30	5,284	11	1,864			576
middie atlantic																		
New York...........		10, 888	2	227	78	35			${ }^{\text {s }} 229$	${ }^{3} 3$	${ }^{5} 114$		3,122	96	-1,538	${ }^{1} 18$		4,287
New Jersey	3	15, 103		72	15		1	2	458		116	49	2,068	35	3,719			1,307
Pennsylvania...........	8	15, 503		175	6			2			46		7,535	82	7,888	${ }^{1} 6$	4	1,674
rast north central																		
Ohlo...		7,365		159	3	1					371		6, 932		3,985	${ }^{2} 144$		
Indiana.		- $\begin{aligned} & 1,578 \\ & 6,501\end{aligned}$	6 8 8	(160			1	21 10	123	1	1,481	- 20	$\begin{array}{r}487 \\ 487 \\ \hline 88\end{array}$	${ }_{56}^{11}$	- 504			- 204
Michigan		7,108	45	85	9	11			202		139	59	960	33	2,481	35		
Wisconsin...		9, 517		${ }_{23}$	4			3	65		2,815		2,311	18	3,263			-234

		－	！			9\％	\％\％		$=$
		\％		\％${ }^{+\infty}$	－－¢0\％	${ }^{\infty-1}$		\％\％i̊is	
		－		－：	－0～R	：		\％	
	\％\％			\％\％isp		\％\％ixamimixem	\％	$\begin{aligned} & \text { Fima } \\ & \text { Fision } \end{aligned}$	－
			ローํํ（			＋	∞	－9．90\％	
	ัֻisficivie్poum				స్inepmo	没区ి	\％	若丮算 R్ֹష్ర్	＂
	留च等		＋	เะีะ	వస్షి				－
							쿄ํํํ		\％
			\％	涊	－8¢	－		¢ix	\cdots
	\％	\％${ }^{\text {c／：}}$	＇${ }^{\circ}$	\％			8	\％isitic	F_{5}
		：	－	\cdots		\cdots	0×1	움ํㅜㄱ	
	\cdots－	－		－	5 －		9		
	∞			－		：	－	\％	8
	ธํํํ	¢ ${ }_{0}$	－	$\underbrace{\infty}$	ㅋㅋㄱㅇㅠ	$\begin{array}{l:l} \hline-\infty \infty-1 \\ \hline \end{array}$	バか		－젱
			¢	ำำ		－ 9 ¢\％\％	¢		준
	\％		－	，		！ヵュ ${ }^{\infty}$ ¢	$\underset{-1}{\infty}$	\％og	\bigcirc
			:o ze		Misisiz	 $\cdots \cdots \cdots$			ఇ®్రీ
								ํㅗํ․	

Consolidated monthly State morbidity reports for January, February, and March 1947-Continued

Division and State	Polio-myelltis*	Rabies in man	Rheumatic fever	Rocky Mountain spotted fever	$\begin{aligned} & \text { Soar- } \\ & \text { let } \\ & \text { fever } \end{aligned}$	Septic sore throat	$\underset{\text { pox* }}{\text { Small }}$	Tetanus	Trachoma	Trichinosis	Tuberculosis, all forms*	Tuberculosis, respiratory	Tularemia	Ty. phoid rever	Para-typhoid fever	Typhus fever, ondemic	Un-dulant fever*	Vincent's infection	Whooping cough
NEW ENGLAND																			
Maine	3				365	11					143	136		3	1		8	5	219
New Hampshire.	3				184	32					34	11		1			16	20	101
Vermont.......	8				87						51	51		1	1		30		202
Massachusetts.	7				1,849	49		2	4	16	682	640	1	4	33		14		2,160
Rhode Island.	1		10		213	6					137	134			1		6	1	248
Connecticut...	3				560	57		2		2	341	324		2		1	34		616
Middir atlantic																			
New York.	31				114,509	(18)	7	10		35	3,237	3,079	2	20	8	1	68		2,391
New Jersey...	5			1	1,707	70				11	, 828			8	3		11		1,712
Pennsylvania...	16		393		2,701			2		5	1,018		4	37	${ }^{14} 8$		30		2,592
EAST NORTH CENTRAL																			
Ohio...	9		18		4,896	30	6	1	3		1,579					1	31	8	
Indiana	17			$1-$	1,496	73	15	,	5	2	, 620	588	33	26	141		43		1440
Illinois..................-	24		46		1,868	57	2	1	5	3	1,532	1,424	63	21		1	118	51	1,134
Michigan....-.-.......--	11.		72		1,959	114				2	1,494 508		4 3	8	1420		44		2,805 1,823
Wisconsin...............-	11.				1,019	72					508		3	7			71	--...--	1,823
West north central																			
Minnesota.	15		37		701	82				36	${ }^{7} 329$		1	4	142		81	28	125
Iowa...-	8		1		566	28					168			4			234		213
Missouri	11		37		503	19	2				637		25	11			37	4	205
North Dakota	9		1		132				19			59		4				14	
South Dakota	2				134	6	1		2		73			1	2			1	24
Nebraska.	12				437						119			3			2		192
Kansas...-	9		4		687	4	5		4		170	168	6	2			38	73	177
SOUTH ATLANTIC																			
Delaware					170	1			1		49	49		1			2		88
Maryland -.....-.......-	5		41		416	45		2		2	638	623				5	10	-	866
District of Columbia...	2				150						447	435	4	2					63
Virginia................	12			1	538	480		1			942		28	16	1	3	3		1,031
West Virginia............-	4				279	4					710		2	11			2		259
North Carolina-........--	12			1	430						1,072	1,038	32	8		20			593
South Carolina..........-- Georgia.	1		107	--.....-	143	1,213			..-..	1	85	---77-	18	11		17	21	-	
Georgia-...................	- ${ }^{6}$		10		232 157	63 42		3 7			475 1,025	$\begin{array}{r} 473 \\ 1,025 \end{array}$	52 3	[5	148	${ }_{63}^{132}$	21 10	$\stackrel{24}{51}$	$\begin{aligned} & 192 \\ & 420 \end{aligned}$

					18
$\begin{array}{l:l} \hline \text { ig } & : \\ & : \\ \hline \end{array}$	！	（100000：	※્太心：	\％200\％	1
	$\cdots \infty$	$\infty \infty: \ll \infty$	ペ\％	$\begin{array}{l\|} \hline \infty \% \\ \text { mis } \\ \text { min } \\ \text { in } \end{array}$	-1
＊－90	$\theta_{i=1}^{\infty}$		：	9\％\％	：000
ब			∞	믈 － －	：
$\cdots \mathrm{ncom}$	－罧ご发	$\infty \times: \begin{array}{c:c:c} \infty & \infty & \cdots \\ & & \\ & & \\ \hline \end{array}$	$\cdots \infty$		：0
	の鳥边		：	\％	1
					発：
			ద్న్స్ల్గ్		No
！	$-1:$ $:$	io ！：：：：	$: \sim \infty$	¢్మ入－${ }_{\text {¢ }}$	：
	¢ ¢0¢	O－N：	\qquad	Na\％	1
： 000	∞		$\cdots:$a 	88989	im：
$\rightarrow 10 \rightarrow 0$	$\infty=:$		：${ }_{\text {¢ }}$	ఇ¢్స్	！
	$\underbrace{\infty}_{\infty}$	Nownoc :o्ల	ャッ（\％）		¢ヵ，
	MNN®				$* \infty!$
	： 0 ：		1 1 \vdots \vdots 	二000	1 \vdots \vdots \vdots \vdots \vdots 1
$\begin{array}{ll:l} \hline 8 & : \\ 1 & : & \\ : & : \\ \hline \end{array}$			8）		
$\begin{array}{l:l} 1-1 \\ : & \\ \vdots & \\ \hline \end{array}$		\qquad	：	Nが1	：：
	二거응		$\infty \times \infty$		$1 \infty=$

See fontnotes on p． 894.

Diarrhea: New York 80, New Jersey 11, Pennsylvania 17(3), Ohio 68 (63) includes enter-
itis. Illinois 9(3), North Dakota 2, Maryland 41(26), South Carolina 3,477(2,300). Florida itis, Illinois 9(3). North Dakota 2, Maryland 41(26), South Carolina 3,477(2,300), Florida
8(6), Colorado 2(3) includes enteritis, Washington 76 (56), Oregon 29, California 77(18) Dog bite: New Hampshire 2 , Illinois 1,840 (2140) all animal bites, Michigan $999(1,232)$, Food poisoning: New Jersey 4, Ohio 2, Indiana 1(6), Illinois 17(3), Louisiana 4(1), Idaho 1 (1). Colorado 1, Oregon 1, California 116 (104). Granuloma inguinale: Florida 81 (43), Tennessee 24 (17), Mississippi 145 (204), Louisiana Impetigo contagiosa. New York 41, Ohio 4 (5), Indiana 7 (26), Illinois 5 (10), Michigan 350 (23), Missouri 3 (3), North Dakota 1 (8), Kansas 12 (4), Montana 15' (2), Idaho
13 (16), W yoming 12 (3), Colorado 2 (24), Nevada 48 (44), Washington 334 (258), Alaska 2, Hawail Territory 7 . Jaundice (including hepatitis and Weil's disease); Maine 14, New Hampshire 4, New
York 236, Ohio 4 (4), Indiana 6 (33), Illinois 9 (19), Michigan 5 (15), Minnesota 8 (9), York 236, Ohio 4 (4), Indiana 6 (33), Illinois 9 (19), Michigan 5 (15), Minnesota 8 (9),
North Dakota 12 (2), Maryland 4 (5), Florida 13 (4), Ten (essee 3 (2), Idaho 4 (1), W yoming 5, Washington 4 (29), Oregon 20 (18), California 41 (101), Hawaii Territory 4 (5).
Leprosy: Louisiana 2, Texas 3, California 7 (2), Panama Canal Zone 1, Hawaif TerriLeprosy: Louisiana 2, Texas 3, California 7 (2), Panama Canal Zone 1, Hawaif Terri-
tory 4 (8).
Lymphocytic choriomeningitis: Massachusetts 3, Minnesota 2, Tennessee 6 (4). Lymphogranuloma venereum: Missouri 12 (12), Florida 108 (24), Tennessee 28 (41), Louisiana 26 (42).
Psittacosis: New York 1, Ohio 1, Michigan 5, California 2. Puerperal septicemia: Florida 1, Mississippi 7 (70), Louisiana 8, New Mexico 1.
Rabies in anlmals: New York 147 (224), Ohio 190 (228), Ilinois 88 (101), Michigan 70 (2), (233), Arkansas 22 (42), Louisiana 4 (20) Texas 323 (218), Colorado 8, New Mexico 2 (7), Rat bite fever: Louisiana 1. 102), Alaska Relapsing fever: Texas 10 (10), Nevada 1.
Ringworm disease: Pennsylvania 273 (147), Ohio 22 (20), Illinois 1,366 (1,025), Míchigan Scabies: Rhode Island 8. Pennsylvania 188 (84), Ohio 25, Michigan 382 (408), Missouri Scabies: Rhode island 8, Pennsylvania 186 (84), Ohio 25, Michigan 382 (408), Missouri Silicosis: New Hampshire 1 (1), Kansas 2, New Mexico 4 (3), Idaho 1, Washington 2.

* Diseases marked with an asterisk (*) are reportable by law or regulation in all the States, including the District of Columbia. Typhoid fever is reportable in all the States; District of Columbia but is not included in the table. Some States have increased and some have reduced the list of reportable diseases since the latest published compilation of
reportable diseases (Pub. Health Rep., 59:317-340 (Mar. 10, 1944). Reprint No. 2514). ${ }^{1}$ Includes cases of kerato- and suppurative conjunctivitis and of pink eye.
2 In a few States practically all cases contracted outside continental United States.
; Ophthalmia neonatorum. Ophthalmia neonatorum.
- Exclusive of 40 cases of artificially induced malaria.

Includes nonresidents.

- Off-shipping.

10 Includes the
11 In the Canal Zone only.
13 Includes septic sore throat.
18 Included in scarlet fever.
14 Includes cases reported as "salmonella inf
15 The number of ceses of septic sore throa
11 In the Canal Zone only.
1 IIcludes septic sore throat.
18 Included in scarlet fever.
14 Includes cases reported as "salmonella inf
15 The number of ceses of septic sore throa
${ }^{14}$ Includes cases reported as "salmonella infection." 1946 should be 376 and for the United States should be 3.634 instead of the fing quarter of lished on p. 363 of the PUBLIC HEALTH REPORTS for Mar. 7, 1947; for the year 1946, the total number of reported cases of septic sore throat in Texas should be 865 and
for the United States should be 9,525 instead of the flgures as published on p. 407 of the PUBLIC HEALTH REPORTS for Mar. 14, 1917.

The following list includes certain rare conditions, diseases of restricted geographical
distribution, and those reportable in or reported by only a few States; last year's flgures distribution, and those reportable in or reported by only a few States; last year's figures
in parentheses (where no figures are given, no cases were reported last year):

Botulism: Connecticut 2, New York 1, New Jersey 1, Maryland 4, New Mexico 4, Wash-
ington 5.
Dengue: South Carolina 2 (2), Mississippi 1, Texas 3(3).
Dermatitis: New Hampsire 5, Missouri 63.

WEEKLY REPORTS FROM CITIES ${ }^{1}$

City reports for week ended May 17, 1947
This table lists the reports from 90 cities of more than 10,000 population distributed throughout the United States, and represents a cross section of the current urban incidence of the diseases included in the table.

[^9]City reports for week onded May 17, 1947—Continued

City reports for week ended May 17, 1947-Continued

Division, State, and City			Infuenza									
			$\begin{aligned} & \mathbf{8} \\ & 0 \\ & 0 \end{aligned}$									
PACIFIC												
Washington: Beattle	0	0				1	0		3	0	0	
Spatrane-----------------	0	0		0		0	1	0	1	0	0	9
Tacoma.--------------------------	0	0		0		0	0	0	1	0	0	1
California:												
Los Angeles-.-.------	7	0	10	1	14	1	4	0	34	0	1	57
Sacramento.	2	0		0		0	1	0	1	0	0	3
San Francteco..	0	0		0	6	1	2	0	7	0	1	5
Total	63	0	44	12	2, 824	28	286	8	656	0	12	958
Corresponding week, 1946*-	71		35	9	8,150		271		1,113	1	16	538
A verage 1942-46*-.--------	62		45	${ }^{2} 13$	${ }^{3} 5,594$		\% 305	------	1,331	1	15	770

2 3-year average, 1944-46.
${ }^{3}$ 5-year median, 1942-46.
*Exclusive of Oklahoma City.
Dysentery, amebic.-Cases: New Haven 1; New York 3; St. Louis 1; Memphis 1; New Orleans 8; Los Angeles 4.

Dysentery, bacillary.-Cases: Worcester 2; Chicago 1; Los Angeles 2.
Dysentery, unspecified.-Cases: Cincinnati 7; Baltimore 1; San Antonio 2.
Leprosy.-Cases: Philadelphia 1.
Rocky Mt. spotted fever.-Cases: Lynchburg 1.
Tularemia.-Cases: St. Louis 1; New Orleans 1.
Typhus fever, endemic.-Cases: New York 1; Ban Antonio 1.
Rates (annual basis) per 100,000 population, by geographic groups, for the 90 cities in the preceding table (latest available estimated population, $\mathbf{3 4} 4,558,600$)

			Influenza									
New England	7.8	0.0	0.0	0.0	1,754	5.2	60.1	2.6	78	0.0	7.8	327
Middle Atlantic.	8.8	0.0	1.9	0.5	227	4.2	44.9	1.4	108	0.0	2.3	101
East North Central.	6.7	0.0	2.5	1.8	296	3.7	41.1	0.0	117	0.0	0.0	167
West North Central	17.9	0.0	0.0	0.0	1,279	4.0	53.7	4.0	171	0.0	0.0	127
South Atlantic.	8.2	0.0	16.3	3.3	278	1.6	31.1	1.6	41	0.0	0.0	208
East South Central	0.0	0.0	41.3	0.0	207	0.0	35.4	0.0	30	0.0	0.0	153
West South Central	7.6	0.0	20.3	12.7	645	12.7	68.6	2.5	20	0.0	5.1	89
Mountain	31.8	0.0	7.9	0.0	421	0.0	95.3	0.0	246	0.0	0.0	95
Pacific..	14.2	0.0	15.8	1.6	40	4.7	12.7	0.0	74	0.0	3.2	123
Total.	9.5	0.0	6.7	1.3	427	4.2	43.3	1.2	99	0.0	1.8	145

TERRITORIES AND POSSESSIONS

Puerto Rico

Notifiable diseases-5 weeks ended March 29, 1947.—During the 5 weeks ended March 29, 1947, cases of certain notifiable diseases were reported in Puerto Rico as follows:

FOREIGN REPORTS

CANADA

Provinces-Communicable diseases-Week ended May S, 1947.During the week ended May 3, 1947, cases of certain communicable diseases were reported by the Dominion Bureau of Statistics of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Brunswick	$\begin{aligned} & \text { Que- } \\ & \text { bec } \end{aligned}$	$\begin{aligned} & \text { On- } \\ & \text { tario } \end{aligned}$	$\begin{gathered} \text { Mani- } \\ \text { toba } \end{gathered}$	Sas katchewan	$\underset{\text { berta }}{\text { AL }}$	$\begin{aligned} & \text { British } \\ & \text { Colum- } \\ & \text { bia } \end{aligned}$	Total
Chickenpox	5	30		164	234	10	21	54	73	591
Diphtheria-.----------.----	2	1		8	1	2			1	15
Dysentery:					3					3
Bacillary.				4						
Encephalitis, infectious.-								1		1
German measles....-.....				40	43	2	19	1	3	108
Infuenza.		11			1	8			185	205
Measles		23	12	61	208	216	57	99	166	842
Meningitis, meningococcus.					3				1	
Mumps.		15		- 32	349	33	62	13	118	622
Poliomyelitis.					1				1	2
Scarlet fever		3	1	63	51	5	1	4	11	139
Tuherculosis (all forms)		11	15	111	22	24	7		36	226
Typhoid and paratyphold fever.		1	2	5	1				6	15
Undulant fever...				2	3			1	1	7
Venereal diseases:										
Gyonorrhes..	4	9 14	26 5	124	100	(1)	15	43 9	75 27	310 210
Other forms						(1)	9			2
Whooping cough		3		32	100	42		24	39	240

${ }^{1}$ Report from Manitoba for the above period not received.

CHILE

Santiago-Typhoid fever.-An outbreak of typhoid fever has been reported in Santiago, Chile, as follows: November 3-30, 1946, 100 cases, 6 deaths; December 1-28, 1946, 206 cases, 20 deaths; December 29, 1946, to January 25, 1947, 124 cases, 11 deaths; January 26 to February 22, 1947, 147 cases, 5 deaths, making a total of 577 cases, 42 deaths during the period November 3, 1946, to February 22, 1947.

FINLAND

Typhoid fever epidemic.-Under date of May 14, 1947, typhoid fever was reported to have reached epidemic proportions in several districts of the western coast during recent weeks. The worst outbreak was stated to have occurred in Kalajoki, where between 170 and 180 cases, with 17 deaths, were reported. Numerous cases also occurred in Pori and vicinity. The health authorities state that the outbreak was caused by the contamination of wells resulting from the spring overflow of streams.

JAMAICA

Notifiable diseases-4 weeks ended May 3, 1947.-For the 4 weeks ended May 3, 1947, cases of certain notifiable diseases were reported in Kingston, Jamaica, and in the island outside of Kingston, as follows:

Disease	Kingston	Other localities	Disease	Kingston	Other localities
Cerebrospinal meningitis.	1		Poliomyolitis		
Chickpnp0x.-..---...-	5	8	Puerperal sensis .-..-		
Diphtheria -.......-.--	2	1	Tuberculosis (all forms)	52	61
Dysentery, unspecified	1	1	Typhoid fever .-.-.-	10	111
Erysipelas... Leprosy	1	1 2	Typhus fever (murine)	1	--.......

JAPAN

Notifiable diseases-4 weeks ended April 26, 1947, and accumulated totals for the year to date.-For the 4 weeks ended April 26, 1947, and for the year to date, certain notifiable diseases have been reported in Japan as follows:

Disease	$4 \text { weeks ended Apr. 26, }$		Total reported for the year to date	
	Cases	Deaths	Cases	Deaths
Diphtheria	2,800	266	11,923	1,176
Dysentery, unspecified-.-.]	352	71	1,167	252
Encephalitis, Japanese "B".	15,006			2
Malaria....	1682	1	2,925	10
Meningitis, epidemic	613	179	1,690	466
Paratyphoid fever...	240	11	883	53
Scarlet fever.	210	${ }_{6}^{6}$	794	21
Snuallpox-...-	61	9	244	29
Typhoid fever.	10,803	108	40,738 3,478	463
Typhus fever.	138	16	+638	51

NEW ZEALAND

Notifiable diseases-4 weeks ended February 22, 1947.-During the 4 weeks ended February 22, 1947, certain notifiable diseases were reported in New Zealand as follows:

REPORTS OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER RECEIVED DURING THE CURRENT WEEK

Notr.-Except in cases of unusual incidence, only those places are included which had not previously reported any of the above-mentioned diseases, except yellow fever, during recent months. All reports of yellow fever are published currently.

A table showing the accumulated figures for these diseases for the year to date is published in the Public Health Reports for the last Friday in each month.

Cholera

Indochina (French)-Cochinchina.-For the period April 21-30, 1947, 35 cases of cholera, with 28 deaths, were reported in Cochinchina, French Indochina.

Smallpox

China-Formosa (Island of)-Kaohsiung.-For the month of March 1947, 41 cases of smallpox, with 9 deaths, were reported in Kaohsiung, Island of Formosa, China.

Luxemburg-Luxemburg.-On May 10, 1947, 1 case of smallpox (alastrim) was reported in the city of Luxemburg.

[^0]: ${ }^{1}$ From the Biologics Oontrol Laboratory, National Institute of Health.

[^1]: Titrations were set ap in duplicate．In the＂blocking＂test the diluted serum of BP was added to each tube so that final dilution of this agglutinating serum was 1：91 in each tube．Agglutinins were added at end of 1 hour＇s incubation．All tubes were incubated 1 hour more，shaken 10 minutes，and read for ag－ glutination．

 Antigen＝Brucella melitensis N．I．H．strain 428.
 $\mathbf{W}=$ Agglutination weaker than in saline control．

[^2]: ${ }^{2}$ N. I. H. strain 2705 was isolated recently from human blood by Doctor C. L. Larson, National Institute of Health.

[^3]:

[^4]: ${ }^{1}$ From States Relations Division, Burean of State Services.

[^5]: ${ }^{1}$ Includes:

 (2) Positive Weil-Felix with no complement-fixation test done....-.- 18
 (3) Positive complement-fixation with negative Weil-Felix
 (4) Negative complement-fixation with Weil-Felix 2 : 160 or higher.. 2
 (5) Deaths reported as due to typhus.

 2 Includes:

 8 Includes all cases on which blood specimens were not obtained, excluding the two fatalities.
 (Acknowledgement: Serological tests were run by the Alabama State Health Department Laboratory and by the U. S. Public Health Service laboratories at the National Institute of Health.)

[^6]: ${ }^{1}$ Mississippi, New York, and North Carolina excluded; New York City included.
 ${ }^{2}$ Mississippi excluded.

[^7]: 1 New York City only.
 ${ }^{2}$ Philadelphia only.
 ${ }^{3}$ Period ended earlier than Saturday.

[^8]: ${ }^{2}$ Period ended earlier than Saturday.
 4 Dates between which the approximate low week ends. The specific date will vary from year to year.

 - Including paratyphoid ferer reported separately, as follows: Massachusetts 1 (salmonella infection);

 Ohio 1; Indiana 1; Illinois 1; Virginia 1; Georgia 1; Texas 1; California 2.

[^9]: In some instances the figures include nonresident cases.

